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Abstract: Hyp_er-dlmc_ansmnal computlr)g (HDC)/ Table 1. HDC Binding & Shift Operations and Target HD
Vector Symbolic Architectures (VSA) [1] implements X y HD(x,y)
associative learning using very large binary vectors. a a* 0.5
This approach has been used to model the learning a®b (a®h)* 0.5
and transfer learning of a foraging honeybee [2]. In Sh(a,10) Sha.10)* 0.5
real-world systems, we may want to copy learned s(igbl)O) Sﬁ(gblo) 8
associations onto multiple agents, e.g. swarm ' ’

systems; however, simply copying the memory Table 2. HDC Bundling & Shift Operation and Target HD
vectors across multiple agents makes all agents o S ok T g* T HDC()X'V)
vulnerable to the same attack by a malicious entity. [a®b + b + (J* [a*®b* + b* + ¢¥] 0
Therefore the challenge is to replicate the parent [a+b + Sh(c,10)]* [a* + b* + Sh(c*,10)] 0
agent’s item memory and compositional memory [b+[a+b+c]+c]* | [b*+[a*+b*+c*] +c* 0
such that all learned associations are preserved yet [a®b +b +c]* [a*®@b* + b* + ¢*] 0

the clone’s memory vectors are maximally
uncorrelated with the parent’s memory vectors. This
work evaluated all 256 elementary cellular automata
(ECA) rules for this task and identified 8 rules that
satisfied these replication requirements. To the best
of the authors’ knowledge, this is the first report of
complete and orthogonal replication of HDC memory
using ECA.
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BACKGROUND

In this work, HDC vectors are represented as vectors
of ‘0’s and ‘1’s of length d = 1e4. The similarity between
any two such vectors is measured by the Hamming
distance (HD), the fraction of non-identical bits, e.g. for
two random HDC vectors HD~0.5. Creating associative
memories among HDC vectors typically involves three
operations: binding, bundling, and cyclic shifting [1].
Bundling is a majority bit operation on a collection of
vectors, denoted as [a+b+c]. Binding is analogous to
assigning or reading a variable value and is performed as
bitwise XOR, denoted as ®. Cyclic shift of vector a by j
elements is denoted as Sh(a,j). In the canonical example,
querying the compositional (associative) memory with
“What is the dollar of Mexico?” returns a noisy version
(0<HD<<0.5) of the encoded “peso” HDC vector [1].

ECA are cell-based binary state machines which
follow a homogeneous rule for state transitions based on
strictly local interactions [4]. Despite their simplicity,
chaos and Turing complete behavior are demonstrated
amongst these rules [4].

In [3], ECA were proposed to replicate HDC vectors
such that the resultant clones were orthogonal, that is
maximally uncorrelated (HD~0.5), to the parent vectors
while still preserving (HD~0) their encoded associations
through binding, bundling, and cyclic shift. An ECA rule
is viable when for each parent HDC vector, clones
(denoted *) resultant from the ith iteration of ECA rule
R satisfy the target HDs (Tables 1 and 2) [2]. In [2], only
ECA rule 90 was studied, and it only met Table 1 criteria.

METHOD
This work explored the viability of all 256 ECA rules
to replicate HDC vectors, producing orthogonal clones
while preserving the associations of all 3 HDC encoding

operations. Random HDC vectors a, b, and ¢ of length d
= le4 were generated and operated upon according to
Tables 1 and 2. The resultant Hamming distances were
then calculated. Each ECA rule was tested for i = 1-50
iterations to study its cloning ability over time.

RESULTS

8 ECArules, viz. 15, 85, 154, 166, 170, 180, 210, and
240, achieved all target HDs. While rules 170 and 240
satisfied conditions with every iteration (Fig. 1a-b), the
remaining six rules were viable only every 8th iteration
(Fig. 1c-d) as indicated by the periodic striping. Each of
these 8 rules when expressed as a Boolean cube are
related to one another, either of the Literal or MUX-XOR
logic family, accounting for their utility in this task [5].
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Fig. 1 HD between parent HDC vectors and clones via ECA rule
a-b) 170 and c-d) 154 according to Tables 1 and 2 criteria.
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All 256 ECA rules were then tested on a foraging bee
associative learning task (see Supplementary Materials),
and only the 8 aforementioned rules demonstrated
complete replication (SM: Fig la,b red circles) and
orthogonality (not shown) of the learned associations.
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